写在开头

这篇文章并不是在介绍行列式,我希望阅读这篇的朋友并不是第一次接触行列式和空间变换。我写这篇文章是想从空间变换的角度来引入行列式,而并不是像课本上一样直接给出它的定义,并且希望你们可以从这个过程中理解行列式的意义。

空间变换

首先,我们假设在n维空间上有个变换(不一定是线性的),把这个变换设为:

{y1=f1(x1,x2,,xn)y2=f2(x1,x2,,xn)yn=fn(x1,x2,,xn)\begin{cases} y_1 = f_1 (x_1, x_2, \dots,x_n)\\ y_2 = f_2 (x_1, x_2, \dots,x_n)\\ \dots\\ y_n = f_n (x_1, x_2, \dots,x_n)\\ \end{cases}

可以知道y1,y2,,yny_1, y_2, \dots,y_nx1,x2,,xnx_1,x_2,\dots,x_n微分间的关系为:

dyi=j=1nfixjdxj, i=1,2,,ndy_i = \sum_{j=1}^n\frac{\partial f_i}{\partial x_j}dx_j,\ i=1,2,\dots,n

或者可以写成矩阵形式

[dy1dy2dyn]=[f1x1f1x2f1xnf2x1f2x2f2xnfnx1fnx2fnxn][dx1dx2dxn]\begin{bmatrix} dy_1\\ dy_2\\ \vdots \\ dy_n \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots &\frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots &\frac{\partial f_2}{\partial x_n}\\ \vdots & \vdots & &\vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots &\frac{\partial f_n}{\partial x_n}\\ \end{bmatrix} \begin{bmatrix} dx_1\\ dx_2\\ \vdots \\ dx_n \end{bmatrix}

有向面积和矢量的外积

我们可以把dx1,dx2,,dxndx_1, dx_2, \dots,dx_n理解成**”矢量微元“,对dx1,dx2,,dxndx_1, dx_2, \dots,dx_n外积得到dx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_n。而dx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_n的意义是n维空间上带方向的”有向面积“**,它的大小是矢量微元dx1,dx2,,dxndx_1, dx_2, \dots,dx_n构成的n维超体的体积,它的方向由右手法则决定。

(说明一下,这里把dxdx理解成矢量是做了简化,实际上这里应该用微分形式来解释,但微分形式很多教材里面没有涉及,所以暂时不作说明,我想这并不妨碍后文的阅读。)

对于外积我们有两个重要的性质

(1)反称性

xy=yxx\wedge y = -y\wedge x

由反称性可以推出

xx=0x\wedge x = 0

(2)双线性

x(y+z)=xy+xz(x+y)z=xz+yzλ(xy)=(λx)y=x(λy)x \wedge (y+z) = x\wedge y +x\wedge z \\ (x+y) \wedge z = x\wedge z +y\wedge z \\ \lambda(x\wedge y) = (\lambda x)\wedge y = x \wedge(\lambda y)

行列式的引入

现在我们探讨一下dy1dy2dyndy_1\wedge dy_2 \wedge \dots \wedge dy_ndx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_n之间的关系,将dy1dy2dyndy_1\wedge dy_2 \wedge \dots \wedge dy_n 写开:

dy1dy2dyn=(j=1nf1xjdxj)(j=1nf2xjdxj)(j=1nfnxjdxj)=i1,,in=1nf1xi1f2xi2fnxindxi1dxi2dxin\begin{split} dy_1\wedge dy_2 \wedge \dots \wedge dy_n &= \left(\sum_{j=1}^n\frac{\partial f_1}{\partial x_j}dx_j \right) \wedge \left(\sum_{j=1}^n\frac{\partial f_2}{\partial x_j}dx_j \right) \wedge \dots \wedge \left(\sum_{j=1}^n\frac{\partial f_n}{\partial x_j}dx_j \right)\\ &= \sum_{i_1,\dots,i_n=1}^{n} \frac{\partial f_1}{\partial x_{i_1}}\cdot \frac{\partial f_2}{\partial x_{i_2}}\dots \frac{\partial f_n}{\partial x_{i_n}}\cdot dx_{i_1}\wedge dx_{i_2} \wedge \dots \wedge dx_{i_n} \end{split}

由于

dxidxj=dxjdxi; dxidxi=0dx_i\wedge dx_j = - dx_j \wedge dx_i ;\ dx_i\wedge dx_i =0

所以可以得到

dy1dy2dyn=i1i2inf1xi1f2xi2fnxindxi1dxi2dxin\begin{split} dy_1\wedge dy_2 \wedge \dots \wedge dy_n = \sum_{i_1\neq i_2\neq \dots \neq i_n} \frac{\partial f_1}{\partial x_{i_1}}\cdot \frac{\partial f_2}{\partial x_{i_2}}\dots \frac{\partial f_n}{\partial x_{i_n}}\cdot dx_{i_1}\wedge dx_{i_2} \wedge \dots \wedge dx_{i_n} \end{split}

此时我们引入**“逆序数”**的概念(具体的定义可以参考一般的线性代数教材,这里不作说明)

dxi1dxi2dxin=(1)τ(i1i2in)dx1dx2dxndx_{i_1}\wedge dx_{i_2} \wedge \dots \wedge dx_{i_n} = (-1)^{\tau(i_1 i_2 \dots i_n)}\cdot dx_1\wedge dx_2 \wedge \dots \wedge dx_n

这样可以把dx1,dx2,,dxndx_1,dx_2,\dots,dx_n间外积的顺序统一成dx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_n,于是

dy1dy2dyn=i1i2inf1xi1f2xi2fnxin(1)τ(i1i2in)dx1dx2dxn=(i1i2in(1)τ(i1i2in)f1xi1f2xi2fnxin)dx1dx2dxn\begin{split} &dy_1\wedge dy_2 \wedge \dots \wedge dy_n \\ &= \sum_{i_1\neq i_2\neq \dots \neq i_n} \frac{\partial f_1}{\partial x_{i_1}}\cdot \frac{\partial f_2}{\partial x_{i_2}}\dots \frac{\partial f_n}{\partial x_{i_n}}\cdot (-1)^{\tau(i_1 i_2 \dots i_n)}\cdot dx_1\wedge dx_2 \wedge \dots \wedge dx_n \\ &= \left( \sum_{i_1\neq i_2\neq \dots \neq i_n} (-1)^{\tau(i_1 i_2 \dots i_n)}\cdot \frac{\partial f_1}{\partial x_{i_1}}\cdot \frac{\partial f_2}{\partial x_{i_2}}\dots \frac{\partial f_n}{\partial x_{i_n}}\cdot \right) dx_1\wedge dx_2 \wedge \dots \wedge dx_n \end{split}

此时我们引入**”行列式“**的概念,把上式圆括号中的内容记作

det(fixj)或者f1x1f1x2f1xnf2x1f2x2f2xnfnx1fnx2fnxndet \left(\frac{\partial f_i}{\partial x_j} \right) 或者 \left| \begin{matrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots &\frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots &\frac{\partial f_2}{\partial x_n}\\ \vdots & \vdots & &\vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots &\frac{\partial f_n}{\partial x_n}\\ \end{matrix} \right|

于是

dy1dy2dyn=f1x1f1x2f1xnf2x1f2x2f2xnfnx1fnx2fnxndx1dx2dxndy_1\wedge dy_2 \wedge \dots \wedge dy_n = \left| \begin{matrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots &\frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots &\frac{\partial f_2}{\partial x_n}\\ \vdots & \vdots & &\vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots &\frac{\partial f_n}{\partial x_n}\\ \end{matrix} \right| \cdot dx_1\wedge dx_2 \wedge \dots \wedge dx_n

可以看到det(fixj)det \left(\frac{\partial f_i}{\partial x_j} \right)实际上是在表示变换前后的有向面积dx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_ndy1dy2dyndy_1\wedge dy_2 \wedge \dots \wedge dy_n之间的关系,这个关系包括方向和大小

几点说明

行列式的定义】n阶行列式等于所有取自不同行不同列n 个元素乘积代数和

通过上面的过程你应该体会到在行列式的定义中

**(1)【逆序数】**的引入是必要的

通过引入逆序数的概念把

dxi1dxi2dxindx_{i_1}\wedge dx_{i_2} \wedge \dots \wedge dx_{i_n}

的定向统一成

dx1dx2dxndx_1\wedge dx_2 \wedge \dots \wedge dx_n

两者相差一个 +/+/- 号,正负号由逆序数判定。

**(2)【不同行】**的要求是必须的

由最开始的式子

(j=1nf1xjdxj)(j=1nf2xjdxj)(j=1nfnxjdxj)\small \left(\sum_{j=1}^n\frac{\partial f_1}{\partial x_j}dx_j \right) \wedge \left(\sum_{j=1}^n\frac{\partial f_2}{\partial x_j}dx_j \right) \wedge \dots \wedge \left(\sum_{j=1}^n\frac{\partial f_n}{\partial x_j}dx_j \right)

可以看到,同行的元素在同一个括号里面,不能相乘,所以不同行的要求是必须的。

**(3)【不同列】**的要求是合理的

因为同列的元素对应的是同方向的矢量微元,同方向的矢量做外积=0=0 ,所以要求不同列。

举个例子

[例] 求双曲线xy=p,xy=qx y=p, x y=q与直线y=ax,y=bxy=ax, y=b x在第一象限所围图形的面积

example

xy=u,y/x=vxy = u, y/x = v,即作变换

{x=u/vy=uv\begin{cases} x = \sqrt{u/v}\\ y = \sqrt{uv} \end{cases}

变换前后微分间的关系为:

[dxdy]=[12uv12uv312vu12uv][dudv]\begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2}\sqrt{\frac{u}{v^3}} \\ \frac{1}{2}\sqrt{\frac{v}{u}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{bmatrix} \begin{bmatrix} du \\ dv \end{bmatrix}

xyx-y坐标系内关于区域DD求积分,变换到uvu-v坐标系内关于DD'求积分,两者带方向的面积微元间的关系为:

dxdy=(12uvdu+12uv3dv)(12vudu+12uvdv)=12uv12uv312vu12uvdudv=12vdudvdxdy=12vdudvdxdy=12vdudv\begin{split} dx\wedge dy &= \left( \frac{1}{2\sqrt{uv}}du + -\frac{1}{2}\sqrt{\frac{u}{v^3}}dv \right) \left( \frac{1}{2}\sqrt{\frac{v}{u}}du + \frac{1}{2}\sqrt{\frac{u}{v}}dv \right) \\ &= \left| \begin{matrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2}\sqrt{\frac{u}{v^3}} \\ \frac{1}{2}\sqrt{\frac{v}{u}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{matrix} \right| du\wedge dv \\ &= \frac{1}{2v}du\wedge dv \\ &\Rightarrow \left| dx\wedge dy \right| = \left| \frac{1}{2v}du\wedge dv \right| \\ &\Rightarrow dxdy = \left| \frac{1}{2v}\right| dudv \end{split}

注意这里取绝对值是为了去掉了由定向不同而产生的符号,于是

SD=Ddxdy=D12vdudv=pqduab12vdv=12(qp)lnbb\begin{split} S_D &=\iint \limits_{D} dxdy =\iint \limits_{D'} \left| \frac{1}{2v}\right| dudv\\ &=\int_{p}^{q}du\int_{a}^{b}\frac{1}{2v}dv =\frac{1}{2}(q-p)ln\frac{b}{b} \end{split}

在这个例子中

dxdy=(x,y)(u,v)dudv\large dxdy = \frac{\partial(x,y)}{\partial(u,v)}dudv \\

其中 (x,y)(u,v)=12v\frac{\partial(x,y)}{\partial(u,v)}=\frac{1}{2v},在区域 DD 中,(x,y)(u,v)>0\frac{\partial(x,y)}{\partial(u,v)}>0xyx-y 坐标系与 uvu-v 坐标系的定向相同,它们面积微元间的比例系数为(x,y)(u,v)=12v\frac{\partial(x,y)}{\partial(u,v)}=\frac{1}{2v} (这里不是一个线性变换,所以不同位置的比例系数不一样;如果是一个线性变换,那么(x,y)(u,v)\frac{\partial(x,y)}{\partial(u,v)} 将对应一个常矩阵的行列式,为常数)