参考

pytorch vision resnet

resnet.py | pytorch github

借助 torch hub

可以直接借助 torch hub pytorch vision resnet 来加载预训练的 resnet。

1
2
3
4
5
6
7
8
import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet18', pretrained=True)
'''or any of these variants'''
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet34', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet101', pretrained=True)
# model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet152', pretrained=True)
model.eval()

这种直接调用 torch hub 接口的方式,优点是很简单易用,缺点是它默认的输入是 [B, 3, H, W],默认的输出是 [B, 1000],不提供修改 in_channels 和 num_classes 的接口。

重写 torch resnet

参考 Pytorch 对 resnet 的实现代码 resnet.py | pytorch github,对代码进行简化。这种 ResNet 实现的主体结构与 Pytorch 的一致,可以直接导入 Pytorch 官方提供的 ResNet 预训练模型。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
'''ref: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py'''

from typing import Any, Callable, List, Optional, Type, Union

import torch
import torch.nn as nn
from torch import Tensor

RESNET_WEIGHTS_URL = {
'IMAGENET1k_V1': {
'resnet18': "https://download.pytorch.org/models/resnet18-f37072fd.pth",
'resnet34': "https://download.pytorch.org/models/resnet34-b627a593.pth",
'resnet50': "https://download.pytorch.org/models/resnet50-0676ba61.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-63fe2227.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-394f9c45.pth",
},

'IMAGENET1k_V2': {
'resnet50': "https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-cd907fc2.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-f82ba261.pth",
},
}

def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)


def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
expansion: int = 1

def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x: Tensor) -> Tensor:
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class Bottleneck(nn.Module):
"""
Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
while original implementation places the stride at the first 1x1 convolution(self.conv1)
according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
This variant is also known as ResNet V1.5 and improves accuracy according to
https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
"""

expansion: int = 4

def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x: Tensor) -> Tensor:
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer

self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]

def _make_layer(
self,
block: Type[Union[BasicBlock, Bottleneck]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)

layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)

return nn.Sequential(*layers)

def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x

def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)


def _resnet(
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int,
**kwargs: Any,
) -> ResNet:
model = ResNet(block, layers, num_classes=num_classes, **kwargs)
return model


def resnet18(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""
# weights = ResNet18_Weights.verify(weights)

return _resnet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, **kwargs)


def resnet34(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, **kwargs)


def resnet50(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)


def resnet101(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)


def resnet152(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, **kwargs)

if __name__ == "__main__":
import torch.utils.model_zoo as model_zoo

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
B, C, H, W = 8, 3, 224, 224
input = torch.randn(size=[B, C, H, W], device=device)

model = resnet18().to(device)
# model = resnet34().to(device)
# model = resnet50().to(device)
# model = resnet101().to(device)
# model = resnet152().to(device)
print(model)

weights_url = RESNET_WEIGHTS_URL["IMAGENET1k_V1"]["resnet18"]
pretrained_dict = model_zoo.load_url(url=weights_url)
model.load_state_dict(pretrained_dict)

output = model(input)
print(output.shape)

预训练权重

使用 torch.utils.model_zoo 来从对应的 url 中下载和加载预训练权重,下面是对 resnet.py | pytorch github 中预训练权重的整理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RESNET_WEIGHTS_URL = {
'IMAGENET1k_V1': {
'resnet18': "https://download.pytorch.org/models/resnet18-f37072fd.pth",
'resnet34': "https://download.pytorch.org/models/resnet34-b627a593.pth",
'resnet50': "https://download.pytorch.org/models/resnet50-0676ba61.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-63fe2227.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-394f9c45.pth",
},

'IMAGENET1k_V2': {
'resnet50': "https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-cd907fc2.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-f82ba261.pth",
},
}

提取 features

很多模型中会使用 ResNet 提取特征,我们还可以在 ResNet 实现的 forward 中添加获取中间 features 的代码,并将结果进行输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class ResNet(nn.Module):
...
def _forward_impl(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
feature0 = x

x = self.layer1(x)
feature1 = x
x = self.layer2(x)
feature2 = x
x = self.layer3(x)
feature3 = x
x = self.layer4(x)
feature4 = x

x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x, [feature0, feature1, feature2, feature3, feature4]

def forward(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]:
return self._forward_impl(x)

if __name__ == "__main__":
import torch.utils.model_zoo as model_zoo

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
B, C, H, W = 8, 3, 224, 224
input = torch.randn(size=[B, C, H, W], device=device)

model = resnet18().to(device)
# model = resnet34().to(device)
# model = resnet50().to(device)
# model = resnet101().to(device)
# model = resnet152().to(device)
print(model)

weights_url = RESNET_WEIGHTS_URL["IMAGENET1k_V1"]["resnet18"]
pretrained_dict = model_zoo.load_url(url=weights_url)
model.load_state_dict(pretrained_dict)

output, features = model(input)
print(output.shape)
print(f"{features[0].shape = }\n" # [B, 64, 56, 56]
f"{features[1].shape = }\n" # [B, 64, 56, 56]
f"{features[2].shape = }\n" # [B, 128, 28, 28]
f"{features[3].shape = }\n" # [B, 256, 14, 14]
f"{features[4].shape = }") # [B, 512, 7, 7]

使用 IntermediateLayerGetter 提取 features

此外还可以借助 IntermediateLayerGetter 方法来提取中间结果。关于 IntermediateLayerGetter 方法更详细的介绍请见 IntermediateLayerGetter 获取中间结果 | 文羊羽,此处仅做展示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
from torchvision.models import resnet18, ResNet18_Weights
from torchvision.models._utils import IntermediateLayerGetter
input = torch.rand(size=(1, 3, 224, 224))

model = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
output = model(input)
print(output.shape)
# torch.Size([1, 1000])

'''extract layer1, layer2, layer3 and layer4, giving as names feat1, feat2, feat3, feat4 respectively'''
return_layers = {'layer1':'feat1', 'layer2':'feat2', 'layer3':'feat3', 'layer4':'feat4'}
new_model = IntermediateLayerGetter(model, return_layers)
output = new_model(input)
for k, v in output.items():
print(k, v.shape)
# feat1 torch.Size([1, 64, 56, 56])
# feat2 torch.Size([1, 128, 28, 28])
# feat3 torch.Size([1, 256, 14, 14])
# feat4 torch.Size([1, 512, 7, 7])

ResNet 所提取 features 的 Shape

resnet18 / resnet34

input: [B, 3, 224, 224]

1
2
3
4
5
features[0].shape = torch.Size([B,  64, 56, 56])
features[1].shape = torch.Size([B, 64, 56, 56])
features[2].shape = torch.Size([B, 128, 28, 28])
features[3].shape = torch.Size([B, 256, 14, 14])
features[4].shape = torch.Size([B, 512, 7, 7])

input: [B, 3, 256, 256]

1
2
3
4
5
features[0].shape = torch.Size([B,  64, 64, 64])
features[1].shape = torch.Size([B, 64, 64, 64])
features[2].shape = torch.Size([B, 128, 32, 32])
features[3].shape = torch.Size([B, 256, 16, 16])
features[4].shape = torch.Size([B, 512, 8, 8])

input: [B, 3, 512, 512]

1
2
3
4
5
features[0].shape = torch.Size([B,  64, 128, 128])
features[1].shape = torch.Size([B, 64, 128, 128])
features[2].shape = torch.Size([B, 128, 64, 64])
features[3].shape = torch.Size([B, 256, 32, 32])
features[4].shape = torch.Size([B, 512, 16, 16])

input: [B, 3, 1024, 1024]

1
2
3
4
5
features[0].shape = torch.Size([B,  64, 256, 256])
features[1].shape = torch.Size([B, 64, 256, 256])
features[2].shape = torch.Size([B, 128, 128, 128])
features[3].shape = torch.Size([B, 256, 64, 64])
features[4].shape = torch.Size([B, 512, 32, 32])

input: [B, 3, 2048, 2048]

1
2
3
4
5
features[0].shape = torch.Size([B,  64, 512, 512])
features[1].shape = torch.Size([B, 64, 512, 512])
features[2].shape = torch.Size([B, 128, 256, 256])
features[3].shape = torch.Size([B, 256, 128, 128])
features[4].shape = torch.Size([B, 512, 64, 64])

resnet50 / resnet101 / resnet152

input: [B, 3, 224, 224]

1
2
3
4
5
features[0].shape = torch.Size([B,   64, 56, 56])
features[1].shape = torch.Size([B, 256, 56, 56])
features[2].shape = torch.Size([B, 512, 28, 28])
features[3].shape = torch.Size([B, 1024, 14, 14])
features[4].shape = torch.Size([B, 2048, 7, 7])

input: [B, 3, 256, 256]

1
2
3
4
5
features[0].shape = torch.Size([B,   64, 64, 64])
features[1].shape = torch.Size([B, 256, 64, 64])
features[2].shape = torch.Size([B, 512, 32, 32])
features[3].shape = torch.Size([B, 1024, 16, 16])
features[4].shape = torch.Size([B, 2048, 8, 8])

input: [B, 3, 512, 512]

1
2
3
4
5
features[0].shape = torch.Size([B,   64, 128, 128])
features[1].shape = torch.Size([B, 256, 128, 128])
features[2].shape = torch.Size([B, 512, 64, 64])
features[3].shape = torch.Size([B, 1024, 32, 32])
features[4].shape = torch.Size([B, 2048, 16, 16])

input: [B, 3, 1024, 1024]

1
2
3
4
5
features[0].shape = torch.Size([B,   64, 256, 256])
features[1].shape = torch.Size([B, 256, 256, 256])
features[2].shape = torch.Size([B, 512, 128, 128])
features[3].shape = torch.Size([B, 1024, 64, 64])
features[4].shape = torch.Size([B, 2048, 32, 32])

input: [B, 3, 2048, 2048]

1
2
3
4
5
features[0].shape = torch.Size([B,   64, 512, 512])
features[1].shape = torch.Size([B, 256, 512, 512])
features[2].shape = torch.Size([B, 512, 256, 256])
features[3].shape = torch.Size([B, 1024, 128, 128])
features[4].shape = torch.Size([B, 2048, 64, 64])