1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
| '''ref: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py'''
from typing import Any, Callable, List, Optional, Type, Union
import torch import torch.nn as nn from torch import Tensor
RESNET_WEIGHTS_URL = { 'IMAGENET1k_V1': { 'resnet18': "https://download.pytorch.org/models/resnet18-f37072fd.pth", 'resnet34': "https://download.pytorch.org/models/resnet34-b627a593.pth", 'resnet50': "https://download.pytorch.org/models/resnet50-0676ba61.pth", 'resnet101': "https://download.pytorch.org/models/resnet101-63fe2227.pth", 'resnet152': "https://download.pytorch.org/models/resnet152-394f9c45.pth", },
'IMAGENET1k_V2': { 'resnet50': "https://download.pytorch.org/models/resnet50-11ad3fa6.pth", 'resnet101': "https://download.pytorch.org/models/resnet101-cd907fc2.pth", 'resnet152': "https://download.pytorch.org/models/resnet152-f82ba261.pth", }, }
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, )
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module): expansion: int = 1
def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride
def forward(self, x: Tensor) -> Tensor: identity = x
out = self.conv1(x) out = self.bn1(out) out = self.relu(out)
out = self.conv2(out) out = self.bn2(out)
if self.downsample is not None: identity = self.downsample(x)
out += identity out = self.relu(out)
return out
class Bottleneck(nn.Module): """ Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) while original implementation places the stride at the first 1x1 convolution(self.conv1) according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385. This variant is also known as ResNet V1.5 and improves accuracy according to https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. """
expansion: int = 4
def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def forward(self, x: Tensor) -> Tensor: identity = x
out = self.conv1(x) out = self.bn1(out) out = self.relu(out)
out = self.conv2(out) out = self.bn2(out) out = self.relu(out)
out = self.conv3(out) out = self.bn3(out)
if self.downsample is not None: identity = self.downsample(x)
out += identity out = self.relu(out)
return out
class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer
self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " f"or a 3-element tuple, got {replace_stride_with_dilation}" ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck) and m.bn3.weight is not None: nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock) and m.bn2.weight is not None: nn.init.constant_(m.bn2.weight, 0)
def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), )
layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) )
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x)
x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x)
x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x)
return x
def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
def _resnet( block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int, **kwargs: Any, ) -> ResNet: model = ResNet(block, layers, num_classes=num_classes, **kwargs) return model
def resnet18(*, num_classes: int = 1000, **kwargs: Any) -> ResNet: """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.
Args: num_classes (int, optional): number of classes. Default is 1000. **kwargs: parameters passed to the `ResNet` base class. """
return _resnet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, **kwargs)
def resnet34(*, num_classes: int = 1000, **kwargs: Any) -> ResNet: """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.
Args: num_classes (int, optional): number of classes. Default is 1000. **kwargs: parameters passed to the `ResNet` base class. """
return _resnet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
def resnet50(*, num_classes: int = 1000, **kwargs: Any) -> ResNet: """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.
Note: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.
Args: num_classes (int, optional): number of classes. Default is 1000. **kwargs: parameters passed to the `ResNet` base class. """
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)
def resnet101(*, num_classes: int = 1000, **kwargs: Any) -> ResNet: """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.
Note: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.
Args: num_classes (int, optional): number of classes. Default is 1000. **kwargs: parameters passed to the `ResNet` base class. """
return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)
def resnet152(*, num_classes: int = 1000, **kwargs: Any) -> ResNet: """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.
Note: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.
Args: num_classes (int, optional): number of classes. Default is 1000. **kwargs: parameters passed to the `ResNet` base class. """
return _resnet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, **kwargs)
if __name__ == "__main__": import torch.utils.model_zoo as model_zoo
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") B, C, H, W = 8, 3, 224, 224 input = torch.randn(size=[B, C, H, W], device=device)
model = resnet18().to(device) print(model)
weights_url = RESNET_WEIGHTS_URL["IMAGENET1k_V1"]["resnet18"] pretrained_dict = model_zoo.load_url(url=weights_url) model.load_state_dict(pretrained_dict) output = model(input) print(output.shape)
|