题目
定义一个非对称的随机游走: 令Y 1 , Y 2 , ⋯ , Y i , ⋯ Y_1,Y_2,\cdots,Y_i,\cdots Y 1 , Y 2 , ⋯ , Y i , ⋯ 独立同分布, 其中P r { Y i = 1 } = 2 3 , P r { Y i = − 1 } = 1 3 Pr\{Y_i = 1\} = \frac{2}{3},Pr\{Y_i = -1\} = \frac{1}{3} P r { Y i = 1 } = 3 2 , P r { Y i = − 1 } = 3 1 , 且定义Z 0 = 0 , Z n = ∑ i = 1 n Y i Z_0=0,Z_n = \sum_{i=1}^nY_i Z 0 = 0 , Z n = ∑ i = 1 n Y i 的随机过程{ Z n , n ≥ 0 } \{Z_n,n\geq0\} { Z n , n ≥ 0 } .
求这个过程从状态0到状态1的期望首达时间μ 01 \mu_{01} μ 01
μ 01 = E { T 01 ∣ Z 0 = 0 } = ∑ i = 1 ∞ n f 01 ( n ) \mu_{01} = E\{T_{01}|Z_0 = 0\} = \sum_{i=1}^\infty nf_{01}^{(n)}
μ 01 = E { T 01 ∣ Z 0 = 0 } = i = 1 ∑ ∞ n f 01 ( n )
其中
T i j = m i n { n ∣ Z 0 = i , Z n = j , n ≥ 1 } T_{ij} = {\rm min}\{n | Z_0 = i,Z_n = j, n\geq1\} T ij = min { n ∣ Z 0 = i , Z n = j , n ≥ 1 } 为马尔科夫链 Z n Z_n Z n 从状态 i i i 出发首次到达状态 j j j 的时间, 简称 首达时 .
T i j T_{ij} T ij 是个随机变量, 并且对于 k = 1 , 2 , ⋯ k=1,2,\cdots k = 1 , 2 , ⋯ 有{ T i j = k } = { Z 0 = i , Z 1 ≠ j , ⋯ , Z k − 1 ≠ j , Z k = j } \{T_{ij} = k\} = \{ Z_0 = i, Z_1\neq j,\cdots,Z_{k-1}\neq j,Z_k = j\} { T ij = k } = { Z 0 = i , Z 1 = j , ⋯ , Z k − 1 = j , Z k = j } .
f i j ( n ) = P r ( T i j = n ∣ Z 0 = i ) f_{ij}^{(n)} = Pr(T_{ij} = n | Z_0 = i) f ij ( n ) = P r ( T ij = n ∣ Z 0 = i ) 为马氏链从状态 i i i 出发恰好经过 n n n 步转移后首次到达状态 j j j 的概率, 简称 首达概率
μ i j = E ( T i j ∣ Z 0 = i ) \mu_{ij} = E(T_{ij}|Z_0=i) μ ij = E ( T ij ∣ Z 0 = i ) 表示从状态 i i i 出发首次到达状态 j j j 的平均转移时间, μ i j = ∑ i = 1 n n f i j ( n ) \mu_{ij} = \sum_{i=1}^n nf_{ij}^{(n)} μ ij = ∑ i = 1 n n f ij ( n ) , 称其为期望首达时
C-K方程的变式
C-K方程的变式 对于马尔科夫链{ X n , n ≥ 0 } \{X_n,n\geq0\} { X n , n ≥ 0 } , 首达概率有如下关系
{ f i j ( 1 ) = p i j ( 1 ) f i j ( n + 1 ) = ∑ k ≠ j f i k ( 1 ) f k j ( n ) e q ( c − k ) \begin{cases}
f_{ij}^{(1)} = p_{ij}^{(1)}\\
f_{ij}^{(n+1)} = \sum_{k\neq j}f_{ik}^{(1)}f_{kj}^{(n)}
\end{cases}
\quad{eq(c-k)}
{ f ij ( 1 ) = p ij ( 1 ) f ij ( n + 1 ) = ∑ k = j f ik ( 1 ) f kj ( n ) e q ( c − k )
证明:
首先由一步转移概率和首达概率的定义可以得到第一个等式
p i j ( 1 ) = P r { X 1 = j ∣ X 0 = i } = f i j ( 1 ) p_{ij}^{(1)} = Pr\{X_{1}=j|X_{0}=i\}=f_{ij}^{(1)}
p ij ( 1 ) = P r { X 1 = j ∣ X 0 = i } = f ij ( 1 )
其次证明第二个等式
f i j ( n + 1 ) = P r { X n + 1 = j , X 1 , ⋯ , n ≠ j ∣ X 0 = i } 贝叶斯公式 → = P r { X n + 1 = j , X 1 , ⋯ , n ≠ j , X 0 = i } P r { X 0 = i } 全概率公式 → = ∑ k ≠ j P r { X n + 1 = j , X 1 , ⋯ , n ≠ j , X 0 = i , X 1 = k } P r { X 0 = i } 构造 f i k ( 1 ) → = ∑ k ≠ j P r { X 1 = k , X 0 = i } P r { X 0 = i } ⋅ P r { X n + 1 = j , X 1 , ⋯ , n ≠ j , X 0 = i , X 1 = k } P r { X 1 = k , X 0 = i } 贝叶斯公式 → = ∑ k ≠ j P r { X 1 = k ∣ X 0 = i } ⋅ P r { X n + 1 = j , X 1 , ⋯ , n ≠ j ∣ X 0 = i , X 1 = k } 马尔可夫性 → = ∑ k ≠ j P r { X 1 = k ∣ X 0 = i } ⋅ P r { X n + 1 = j , X 1 , ⋯ , n ≠ j ∣ X 1 = k } = ∑ k ≠ j f i k ( 1 ) f k j ( n ) \begin{split}
f_{ij}^{(n+1)} &= Pr\{X_{n+1} = j, X_{1,\cdots,n}\neq j | X_0=i\} \\
贝叶斯公式\rightarrow &=
\frac{Pr\{X_{n+1}=j,X_{1,\cdots,n}\neq j,X_0=i\}}{Pr\{X_0=i\}}\\
全概率公式\rightarrow &=
\sum_{k\neq j} \frac{Pr\{X_{n+1}=j,X_{1,\cdots,n}\neq j,X_0=i,X_1=k\}}{Pr\{X_0=i\}}\\
构造f_{ik}^{(1)}\rightarrow &=
\sum_{k\neq j}
\frac{Pr\{X_1 = k,X_0=i\}}{Pr\{X_0=i\}} \cdot
\frac{Pr\{X_{n+1}=j,X_{1,\cdots,n}\neq j,X_0=i,X_1=k\}}{Pr\{X_1 = k,X_0=i\}}
\\
贝叶斯公式\rightarrow &=
\sum_{k\neq j}
Pr\{X_1 = k|X_0=i\}\cdot
Pr\{X_{n+1}=j,X_{1,\cdots,n}\neq j|X_0=i,X_1=k\} \\
马尔可夫性\rightarrow &=
\sum_{k\neq j}Pr\{X_1 = k|X_0=i\} \cdot Pr\{X_{n+1}=j,X_{1,\cdots,n}\neq j|X_1=k\}\\
&=
\sum_{k\neq j}f_{ik}^{(1)}f_{kj}^{(n)}
\end{split}
f ij ( n + 1 ) 贝叶斯公式 → 全概率公式 → 构造 f ik ( 1 ) → 贝叶斯公式 → 马尔可夫性 → = P r { X n + 1 = j , X 1 , ⋯ , n = j ∣ X 0 = i } = P r { X 0 = i } P r { X n + 1 = j , X 1 , ⋯ , n = j , X 0 = i } = k = j ∑ P r { X 0 = i } P r { X n + 1 = j , X 1 , ⋯ , n = j , X 0 = i , X 1 = k } = k = j ∑ P r { X 0 = i } P r { X 1 = k , X 0 = i } ⋅ P r { X 1 = k , X 0 = i } P r { X n + 1 = j , X 1 , ⋯ , n = j , X 0 = i , X 1 = k } = k = j ∑ P r { X 1 = k ∣ X 0 = i } ⋅ P r { X n + 1 = j , X 1 , ⋯ , n = j ∣ X 0 = i , X 1 = k } = k = j ∑ P r { X 1 = k ∣ X 0 = i } ⋅ P r { X n + 1 = j , X 1 , ⋯ , n = j ∣ X 1 = k } = k = j ∑ f ik ( 1 ) f kj ( n )
C-K方程变式的矩阵描述
上面的公式可以用矩阵描述, 令 { X n , n ≥ 0 } \{X_n,n\geq 0\} { X n , n ≥ 0 } 的一步状态转移矩阵为
P = [ p 00 p 01 p 02 ⋯ p 10 p 11 p 12 ⋯ p 20 p 21 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] P =
\begin{bmatrix}
p_{00} & p_{01} & p_{02} & \cdots \\
p_{10} & p_{11} & p_{12} & \cdots \\
p_{20} & p_{21} & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
P = p 00 p 10 p 20 ⋮ p 01 p 11 p 21 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱
另外由于f i j ( 1 ) = p i j ( 1 ) f_{ij}^{(1)} = p_{ij}^{(1)} f ij ( 1 ) = p ij ( 1 ) , 所以
[ p 00 p 01 p 02 ⋯ p 10 p 11 p 12 ⋯ p 20 p 21 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] = [ f 00 f 01 f 02 ⋯ f 10 f 11 f 12 ⋯ f 20 f 21 f 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] \begin{bmatrix}
p_{00} & p_{01} & p_{02} & \cdots \\
p_{10} & p_{11} & p_{12} & \cdots \\
p_{20} & p_{21} & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix} =
\begin{bmatrix}
f_{00} & f_{01} & f_{02} & \cdots \\
f_{10} & f_{11} & f_{12} & \cdots \\
f_{20} & f_{21} & f_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
p 00 p 10 p 20 ⋮ p 01 p 11 p 21 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱ = f 00 f 10 f 20 ⋮ f 01 f 11 f 21 ⋮ f 02 f 12 f 22 ⋮ ⋯ ⋯ ⋯ ⋱
例如求 f 21 ( n ) f_{21}^{(n)} f 21 ( n ) , 首先我们令一步状态转移矩阵中 j = 1 j=1 j = 1 的列全为 0 0 0 , 并由公式 e q ( c − k ) eq(c-k) e q ( c − k ) 得到下面等式
[ f 01 ( 2 ) f 11 ( 2 ) f 21 ( 2 ) ⋮ ] = [ f 00 0 f 02 ⋯ f 10 0 f 12 ⋯ f 20 0 f 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] [ f 01 f 11 f 21 ⋮ ] = [ p 00 0 p 02 ⋯ p 10 0 p 12 ⋯ p 20 0 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] [ p 01 p 11 p 21 ⋮ ] \begin{bmatrix}
f_{01}^{(2)}\\
f_{11}^{(2)}\\
f_{21}^{(2)}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
f_{00} & 0 & f_{02} & \cdots \\
f_{10} & 0 & f_{12} & \cdots \\
f_{20} & 0 & f_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\begin{bmatrix}
f_{01}\\
f_{11}\\
f_{21}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
p_{00} & 0 & p_{02} & \cdots \\
p_{10} & 0 & p_{12} & \cdots \\
p_{20} & 0 & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\begin{bmatrix}
p_{01}\\
p_{11}\\
p_{21}\\
\vdots
\end{bmatrix}
f 01 ( 2 ) f 11 ( 2 ) f 21 ( 2 ) ⋮ = f 00 f 10 f 20 ⋮ 0 0 0 ⋮ f 02 f 12 f 22 ⋮ ⋯ ⋯ ⋯ ⋱ f 01 f 11 f 21 ⋮ = p 00 p 10 p 20 ⋮ 0 0 0 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱ p 01 p 11 p 21 ⋮
重复上面的公式可以得到f i 1 ( 3 ) f_{i1}^{(3)} f i 1 ( 3 )
[ f 01 ( 3 ) f 11 ( 3 ) f 21 ( 3 ) ⋮ ] = [ f 00 0 f 02 ⋯ f 10 0 f 12 ⋯ f 20 0 f 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] [ f 01 ( 2 ) f 11 ( 2 ) f 21 ( 2 ) ⋮ ] = [ p 00 0 p 02 ⋯ p 10 0 p 12 ⋯ p 20 0 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] 2 [ p 01 p 11 p 21 ⋮ ] \begin{bmatrix}
f_{01}^{(3)}\\
f_{11}^{(3)}\\
f_{21}^{(3)}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
f_{00} & 0 & f_{02} & \cdots \\
f_{10} & 0 & f_{12} & \cdots \\
f_{20} & 0 & f_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\begin{bmatrix}
f_{01}^{(2)}\\
f_{11}^{(2)}\\
f_{21}^{(2)}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
p_{00} & 0 & p_{02} & \cdots \\
p_{10} & 0 & p_{12} & \cdots \\
p_{20} & 0 & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}^2
\begin{bmatrix}
p_{01}\\
p_{11}\\
p_{21}\\
\vdots
\end{bmatrix}
f 01 ( 3 ) f 11 ( 3 ) f 21 ( 3 ) ⋮ = f 00 f 10 f 20 ⋮ 0 0 0 ⋮ f 02 f 12 f 22 ⋮ ⋯ ⋯ ⋯ ⋱ f 01 ( 2 ) f 11 ( 2 ) f 21 ( 2 ) ⋮ = p 00 p 10 p 20 ⋮ 0 0 0 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱ 2 p 01 p 11 p 21 ⋮
如此循环可以得到f i 1 ( n ) f_{i1}^{(n)} f i 1 ( n )
[ f 01 ( n ) f 11 ( n ) f 21 ( n ) ⋮ ] = [ f 00 0 f 02 ⋯ f 10 0 f 12 ⋯ f 20 0 f 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] ⋯ [ f 00 0 f 02 ⋯ f 10 0 f 12 ⋯ f 20 0 f 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] [ f 01 f 11 f 21 ⋮ ] = [ p 00 0 p 02 ⋯ p 10 0 p 12 ⋯ p 20 0 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] ( n − 1 ) [ p 01 p 11 p 21 ⋮ ] \begin{bmatrix}
f_{01}^{(n)}\\
f_{11}^{(n)}\\
f_{21}^{(n)}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
f_{00} & 0 & f_{02} & \cdots \\
f_{10} & 0 & f_{12} & \cdots \\
f_{20} & 0 & f_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\cdots
\begin{bmatrix}
f_{00} & 0 & f_{02} & \cdots \\
f_{10} & 0 & f_{12} & \cdots \\
f_{20} & 0 & f_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\begin{bmatrix}
f_{01}\\
f_{11}\\
f_{21}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
p_{00} & 0 & p_{02} & \cdots \\
p_{10} & 0 & p_{12} & \cdots \\
p_{20} & 0 & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}^{(n-1)}
\begin{bmatrix}
p_{01}\\
p_{11}\\
p_{21}\\
\vdots
\end{bmatrix}
f 01 ( n ) f 11 ( n ) f 21 ( n ) ⋮ = f 00 f 10 f 20 ⋮ 0 0 0 ⋮ f 02 f 12 f 22 ⋮ ⋯ ⋯ ⋯ ⋱ ⋯ f 00 f 10 f 20 ⋮ 0 0 0 ⋮ f 02 f 12 f 22 ⋮ ⋯ ⋯ ⋯ ⋱ f 01 f 11 f 21 ⋮ = p 00 p 10 p 20 ⋮ 0 0 0 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱ ( n − 1 ) p 01 p 11 p 21 ⋮
结论
[ f 01 ( n ) f 11 ( n ) f 21 ( n ) ⋮ ] = [ p 00 0 p 02 ⋯ p 10 0 p 12 ⋯ p 20 0 p 22 ⋯ ⋮ ⋮ ⋮ ⋱ ] ( n − 1 ) [ p 01 p 11 p 21 ⋮ ] e q ( c − k − 2 ) \begin{bmatrix}
f_{01}^{(n)}\\
f_{11}^{(n)}\\
f_{21}^{(n)}\\
\vdots
\end{bmatrix} =
\begin{bmatrix}
p_{00} & 0 & p_{02} & \cdots \\
p_{10} & 0 & p_{12} & \cdots \\
p_{20} & 0 & p_{22} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}^{(n-1)}
\begin{bmatrix}
p_{01}\\
p_{11}\\
p_{21}\\
\vdots
\end{bmatrix}
\quad eq(c-k-2)
f 01 ( n ) f 11 ( n ) f 21 ( n ) ⋮ = p 00 p 10 p 20 ⋮ 0 0 0 ⋮ p 02 p 12 p 22 ⋮ ⋯ ⋯ ⋯ ⋱ ( n − 1 ) p 01 p 11 p 21 ⋮ e q ( c − k − 2 )
求解
几点说明
随机过程的 Z n Z_n Z n 的状态空间是整数集 Z \mathbb{Z} Z .
为了方便描述, 我们计算状态 − 2 -2 − 2 到状态 − 1 -1 − 1 的平均首达时间, 由对称性可以知道 μ 0 → 1 = μ ( − 2 ) → ( − 1 ) \mu_{0\rightarrow1} = \mu_{(-2)\rightarrow(-1)} μ 0 → 1 = μ ( − 2 ) → ( − 1 ) ; 并且只考虑全体负整数状态 { − 1 , − 2 , ⋯ } \{-1,-2,\cdots\} { − 1 , − 2 , ⋯ } , 因为在讨论首达时间的时候, 状态走到 − 1 -1 − 1 整个过程就停止了, 所以 Z n Z_n Z n 取不到 { 0 , 1 , 2 , ⋯ } \{0,1,2,\cdots\} { 0 , 1 , 2 , ⋯ } 这些状态了.
还是为了方便描述, 在后面我们用 { 1 , 2 , ⋯ } \{1,2,\cdots\} { 1 , 2 , ⋯ } 来表示 { − 1 , − 2 , ⋯ } \{-1,-2,\cdots\} { − 1 , − 2 , ⋯ } 这些状态 (这样可以少写负号), 即 μ 21 \mu_{21} μ 21 表示状态 − 2 -2 − 2 到 − 1 -1 − 1 的期望首达时间.
正式求解
由题设容易给出 Z n Z_n Z n 的一步转移矩阵
− 1 − 2 − 3 ⋯ − 1 − 2 − 3 ⋮ [ 0 1 / 3 0 ⋯ 2 / 3 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] \begin{array}{rl}
&
\begin{matrix}
\quad-1 & -2 & -3 & \cdots
\end{matrix}
\\
\begin{matrix}
-1 \\ -2 \\ -3 \\ \vdots
\end{matrix}
&
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
2/3 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}
\end{array}
− 1 − 2 − 3 ⋮ − 1 − 2 − 3 ⋯ 0 2/3 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱
记为 P \boldsymbol{P} P
由公式 e q ( c − k − 2 ) eq(c-k-2) e q ( c − k − 2 ) , 可以如下计算从状态− 2 -2 − 2 到状态− 1 -1 − 1 的 n n n 步首达概率 f 21 ( n ) f_{21}^{(n)} f 21 ( n )
f 21 ( n ) = [ 0 , 1 , 0 , ⋯ ] [ 0 1 / 3 0 ⋯ 0 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] ( n − 1 ) [ 0 1 / 3 0 ⋯ 2 / 3 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] [ 1 0 0 ⋮ ] = [ 0 , 1 , 0 , ⋯ ] [ 0 1 / 3 0 ⋯ 0 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] ( n − 1 ) [ 0 2 / 3 0 ⋮ ] \begin{split}
f_{21}^{(n)}
&=
\begin{bmatrix}
0,&1,&0,&\cdots
\end{bmatrix}
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
0 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}^{(n-1)}
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
2/3 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}
\begin{bmatrix}
1 \\ 0 \\ 0 \\ \vdots
\end{bmatrix}
\\
&=
\begin{bmatrix}
0,&1,&0,&\cdots
\end{bmatrix}
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
0 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}^{(n-1)}
\begin{bmatrix}
0 \\ 2/3 \\ 0 \\ \vdots
\end{bmatrix}
\end{split}
f 21 ( n ) = [ 0 , 1 , 0 , ⋯ ] 0 0 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱ ( n − 1 ) 0 2/3 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱ 1 0 0 ⋮ = [ 0 , 1 , 0 , ⋯ ] 0 0 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱ ( n − 1 ) 0 2/3 0 ⋮
令
[ 0 , 1 , 0 , ⋯ ] [ 0 1 / 3 0 ⋯ 0 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] m = [ g ( m , 1 ) , g ( m , 2 ) , g ( m , 3 ) , ⋯ ] \begin{bmatrix}
0,&1,&0,&\cdots
\end{bmatrix}
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
0 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}^{m} =
\begin{bmatrix}
g(m,1), & g(m,2), & g(m,3), & \cdots
\end{bmatrix}
[ 0 , 1 , 0 , ⋯ ] 0 0 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱ m = [ g ( m , 1 ) , g ( m , 2 ) , g ( m , 3 ) , ⋯ ]
于是有
[ g ( m , 1 ) , g ( m , 2 ) , ⋯ ] = [ g ( m − 1 , 1 ) , g ( m − 1 , 2 ) , ⋯ ] [ 0 1 / 3 0 ⋯ 0 0 1 / 3 ⋯ 0 2 / 3 0 ⋱ ⋮ ⋮ ⋱ ⋱ ] \begin{equation}
\begin{bmatrix}
g(m,1), & g(m,2), & \cdots
\end{bmatrix} =
\begin{bmatrix}
g(m-1,1), & g(m-1,2), & \cdots
\end{bmatrix}
\begin{bmatrix}
0 & 1/3 & 0 & \cdots \\
0 & 0 & 1/3 & \cdots \\
0 & 2/3 & 0 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{bmatrix}
\end{equation}
[ g ( m , 1 ) , g ( m , 2 ) , ⋯ ] = [ g ( m − 1 , 1 ) , g ( m − 1 , 2 ) , ⋯ ] 0 0 0 ⋮ 1/3 0 2/3 ⋮ 0 1/3 0 ⋱ ⋯ ⋯ ⋱ ⋱
即
{ g ( m , 1 ) = 0 , i = 1 g ( m , i ) = 1 3 g ( m − 1 , i − 1 ) + 2 3 g ( m − 1 , i + 1 ) , i ≥ 2 \begin{cases}
g(m,1)=0, & i=1\\
g(m,i) = \frac{1}{3}g(m-1,i-1)+\frac{2}{3}g(m-1,i+1),&i\geq 2
\end{cases}
{ g ( m , 1 ) = 0 , g ( m , i ) = 3 1 g ( m − 1 , i − 1 ) + 3 2 g ( m − 1 , i + 1 ) , i = 1 i ≥ 2
最后
f 21 n = 2 3 g ( n − 1 , 2 ) \begin{gather}
f_{21}^{n} = \frac{2}{3}g(n-1,2)
\end{gather}
f 21 n = 3 2 g ( n − 1 , 2 )
使用Python计算上述递归式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 def g (m,i ): if m == 0 : if i == 2 : return 1 else : return 0 else : if i == 1 : return 0 else : return 1 /3 *g(m-1 ,i-1 )+2 /3 *g(m-1 ,i+1 ) E = 0.0 Pr = 0.0 for n in range (1 ,30 ): print ('n = %d' % n) if (n%2 ) == 1 : f_n_21 = 2 /3 *g(n-1 ,2 ) temp = n*f_n_21 E += temp Pr += f_n_21 print ('Pr = %.4f' % Pr) print ('ΔE = %.4f ' % temp) print ('f_n_21 = %.4f' % f_n_21) print ('E = %.4f \n' % E) else : print ('f_n_21 = %.4f \n' % 0 )
输出
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 n = 1 Pr = 0.6667 ΔE = 0.6667 f_n_21 = 0.6667 E = 0.6667 n = 2 f_n_21 = 0.0000 . . . n = 28 f_n_21 = 0.0000 n = 29 Pr = 0.9941 ΔE = 0.0370 f_n_21 = 0.0013 E = 2.7568
∑ n = 1 29 n f 21 ( n ) = 2.7568 \sum_{n=1}^{29} nf_{21}^{(n)} = 2.7568
n = 1 ∑ 29 n f 21 ( n ) = 2.7568