Panoptic FPN 整体结构图

Panoptic Feature Pyramid Networks

参考实现

FPN 部分

这一部分的代码是参考 FPN-Semantic-segmentation | github 这个仓库

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''Panoptic FPN in PyTorch.
See the paper "Panoptic Feature Pyramid Networks" for more details.
'''
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F

import torch.utils.model_zoo as model_zoo
from resnet import resnet50, resnet101, resnet152, RESNET_WEIGHTS_URL

def build_backbone(name: str = Literal["resnet50", "resnet101", "resnet152"], pretrained: bool = True):
if name == "resnet50":
backbone = resnet50()
weights_url = RESNET_WEIGHTS_URL['IMAGENET1k_V2']['resnet50']
elif name == "resnet101":
backbone = resnet101()
weights_url = RESNET_WEIGHTS_URL['IMAGENET1k_V2']['resnet101']
elif name == "resnet152":
backbone = resnet152()
weights_url = RESNET_WEIGHTS_URL['IMAGENET1k_V2']['resnet152']
else:
raise Exception("Please choose backbone from resnet50|resnet101|resnet152.")

if pretrained:
pretrained_state_dict = model_zoo.load_url(url=weights_url)
backbone.load_state_dict(pretrained_state_dict)

return backbone

class FPN(nn.Module):

def __init__(self, num_classes, backbone_name='resnet101', pretrained=True):
super(FPN, self).__init__()
self.in_planes = 64
self.num_classes = num_classes

self.backbone = build_backbone(name=backbone_name, pretrained=pretrained)

# Top layer
self.toplayer = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) # Reduce channels

# Smooth layers
self.smooth1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.smooth2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.smooth3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

# Lateral layers
self.latlayer1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
self.latlayer3 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)

# Semantic branch
self.semantic_branch = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(128, self.num_classes, kernel_size=1, stride=1, padding=0)
# num_groups, num_channels
self.gn1 = nn.GroupNorm(128, 128)
self.gn2 = nn.GroupNorm(256, 256)


def _upsample(self, x, h, w):
return F.interpolate(x, size=(h, w), mode='bilinear', align_corners=True)

def _make_layer(self, Bottleneck, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(Bottleneck(self.in_planes, planes, stride))
self.in_planes = planes * Bottleneck.expansion
return nn.Sequential(*layers)

def _upsample_add(self, x, y):
'''Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
'''
_,_,H,W = y.size()
return F.interpolate(x, size=(H,W), mode='bilinear', align_corners=True) + y


def forward(self, x):
# Bottom-up using backbone
low_level_features = self.backbone(x)
c1 = low_level_features[0]
c2 = low_level_features[1]
c3 = low_level_features[2]
c4 = low_level_features[3]
c5 = low_level_features[4]

# Top-down
p5 = self.toplayer(c5) # [B, 2048, H/32, W/32] -toplayer -> [B, 256, H/32, W/32]
p4 = self._upsample_add(p5, self.latlayer1(c4)) # [B, 1024, H/16, W/16] -latlayer1-> [B, 256, H/16, W/16]
p3 = self._upsample_add(p4, self.latlayer2(c3)) # [B, 512, H/8, W/8] -latlayer2-> [B, 256, H/8, W/8]
p2 = self._upsample_add(p3, self.latlayer3(c2)) # [B, 256, H/4, W/4] -latlayer3-> [B, 256, H/4, W/4]

# Smooth
p4 = self.smooth1(p4)
p3 = self.smooth2(p3)
p2 = self.smooth3(p2)

# Semantic
_, _, h, w = p2.size()
# 256->256
s5 = self._upsample(F.relu(self.gn2(self.conv2(p5))), h, w)
# 256->256
s5 = self._upsample(F.relu(self.gn2(self.conv2(s5))), h, w)
# 256->128
s5 = self._upsample(F.relu(self.gn1(self.semantic_branch(s5))), h, w)

# 256->256
s4 = self._upsample(F.relu(self.gn2(self.conv2(p4))), h, w)
# 256->128
s4 = self._upsample(F.relu(self.gn1(self.semantic_branch(s4))), h, w)

# 256->128
s3 = self._upsample(F.relu(self.gn1(self.semantic_branch(p3))), h, w)

s2 = F.relu(self.gn1(self.semantic_branch(p2)))
return self._upsample(self.conv3(s2 + s3 + s4 + s5), 4 * h, 4 * w)

if __name__ == "__main__":
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")

B, C, H, W = 8, 3, 512, 512
input = torch.rand(size=[B, C, H, W], device=device)

model = FPN(num_classes=32, backbone_name="resnet101", pretrained=False).to(device)

output = model(input)
print(output.shape) # torch.Size([8, 32, 512, 512])

ResNet 部分

其中的 resnet 的实现是参考 torch hub 的官方代码,预训练权重也是由 Pytorch 发布的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
'''resnet.py
ref: https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
'''

from typing import Any, Callable, List, Optional, Tuple, Type, Union

import torch
import torch.nn as nn
from torch import Tensor

RESNET_WEIGHTS_URL = {
'IMAGENET1k_V1': {
'resnet18': "https://download.pytorch.org/models/resnet18-f37072fd.pth",
'resnet34': "https://download.pytorch.org/models/resnet34-b627a593.pth",
'resnet50': "https://download.pytorch.org/models/resnet50-0676ba61.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-63fe2227.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-394f9c45.pth",
},

'IMAGENET1k_V2': {
'resnet50': "https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
'resnet101': "https://download.pytorch.org/models/resnet101-cd907fc2.pth",
'resnet152': "https://download.pytorch.org/models/resnet152-f82ba261.pth",
},
}

def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)


def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
expansion: int = 1

def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x: Tensor) -> Tensor:
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class Bottleneck(nn.Module):
"""
Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
while original implementation places the stride at the first 1x1 convolution(self.conv1)
according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
This variant is also known as ResNet V1.5 and improves accuracy according to
https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
"""

expansion: int = 4

def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x: Tensor) -> Tensor:
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer

self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]

def _make_layer(
self,
block: Type[Union[BasicBlock, Bottleneck]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)

layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)

return nn.Sequential(*layers)

def _forward_impl(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
feature0 = x

x = self.layer1(x)
feature1 = x
x = self.layer2(x)
feature2 = x
x = self.layer3(x)
feature3 = x
x = self.layer4(x)
feature4 = x

# x = self.avgpool(x)
# x = torch.flatten(x, 1)
# x = self.fc(x)

return [feature0, feature1, feature2, feature3, feature4]

def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)


def _resnet(
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int,
**kwargs: Any,
) -> ResNet:
model = ResNet(block, layers, num_classes=num_classes, **kwargs)
return model


def resnet18(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""
# weights = ResNet18_Weights.verify(weights)

return _resnet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, **kwargs)


def resnet34(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, **kwargs)


def resnet50(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, **kwargs)


def resnet101(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, **kwargs)


def resnet152(*, num_classes: int = 1000, **kwargs: Any) -> ResNet:
"""ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`.

Note:
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`.

Args:
num_classes (int, optional): number of classes. Default is 1000.
**kwargs: parameters passed to the `ResNet` base class.
"""

return _resnet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, **kwargs)

if __name__ == "__main__":
import torch.utils.model_zoo as model_zoo

# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
B, C, H, W = 8, 3, 256, 256
input = torch.randn(size=[B, C, H, W], device=device)

# model = resnet18().to(device)
# model = resnet34().to(device)
model = resnet50().to(device)
# model = resnet101().to(device)
# model = resnet152().to(device)
# print(model)

weights_url = RESNET_WEIGHTS_URL["IMAGENET1k_V1"]["resnet18"]
pretrained_dict = model_zoo.load_url(url=weights_url)
model.load_state_dict(pretrained_dict)

features = model(input)
print(f"{features[0].shape = }\n"
f"{features[1].shape = }\n"
f"{features[2].shape = }\n"
f"{features[3].shape = }\n"
f"{features[4].shape = }")