Euler积分

含参积分

Γ(s)=0xs1exdx,s>0\Gamma(s) = \int_{0}^\infty x^{s-1}e^{-x}\mathrm dx,\quad s > 0

B(p,q)=01xp1(1x)q1dx,p>0,q>0\Beta(p,q) = \int_{0}^1 x^{p-1}(1-x)^{q-1}\mathrm d x,\quad p > 0,q > 0

在应用中经常出现, 它们统称为Euler积分. 其中前者被称为Gamma函数, 后者称为 Beta函数.

Gamma函数

  • Γ(s)\Gamma(s)的定义域为s>0s>0

Gamma函数Γ(s)\Gamma(s)可以写成如下两个积分的和:

Γ(s)=01xs1exdx+1xs1exdx=Φ(s)+Ψ(s)\Gamma(s) = \int_0^1 x^{s-1}e^{-x}\mathrm dx + \int_1^\infty x^{s-1}e^{-x}\mathrm dx = \Phi(s) + \Psi(s) \notag

其中Φ(s)\Phi(s)s1s\geq1时是正常积分, 当0<s<10<s<1时是收敛的无界反常积分(瑕积分), 其收敛性可以用柯西判别法推得; Ψ(s)\Psi(s)s>0s>0时是收敛的无穷限反常积分(无穷积分), 收敛性用柯西判别法推得. 所以含参积分Γ(s)\Gamma(s)s>0s>0时是收敛的, 即Gamma函数的定义域为s>0s>0.

  • Γ(s)\Gamma(s)在定义域s>0s>0上连续可导

先给出结果, 证明待定(需要说明一致收敛性)

Γ(s)=s0xs1exdx=一致收敛0s(xs1ex)dx=0xs1exlnxdx\begin{split} \Gamma'(s) &= \frac{\partial}{\partial s} \int_{0}^\infty x^{s-1}e^{-x} \mathrm dx \\ \overset{一致收敛}{=}& \int_{0}^\infty \frac{\partial}{\partial s}\left( x^{s-1}e^{-x} \right) \mathrm dx = \int_{0}^\infty x^{s-1}e^{-x}\ln{x}\mathrm dx \end{split}

Note: 需要证明 0xs1exlnxdx\int_{0}^\infty x^{s-1}e^{-x}\ln{x}\mathrm dx 的在 s>0s>0 上的一致收敛性, 而 Γ(s)\Gamma(s) 本身的收敛性已经在定义域中讨论了.

任意阶导数

Γ(n)(s)=0xs1ex(lnx)ndx,s>0\Gamma^{(n)}(s) = \int_{0}^\infty x^{s-1}e^{-x}(\ln{x})^n\mathrm dx, \quad s>0

  • 递推公式Γ(s+1)=sΓ(s)\Gamma{(s+1)} = s\Gamma{(s)}

对下述积分应用分部积分法, 有

0Axsexdx=xsex0A+s0Axs1exdx=AseA+s0Axs1exdx\int_{0}^A x^{s}e^{-x} \mathrm dx = -x^s e^{-x}\bigg\vert_0^A + s\int_{0}^A x^{s-1}e^{-x} \mathrm dx = -A^se^{-A} + s\int_0^A x^{s-1}e^{-x}\mathrm dx \notag

A+A\rightarrow +\infty就得到Gamma函数的递推公式:

Γ(s+1)=sΓ(s)\Gamma(s + 1) = s\Gamma(s)

Note: limA+AseA=LHospital0\underset{A\rightarrow +\infty}{\lim} -A^se^{-A} \overset{L'Hospital}{=} 0

  • Γ(1)\Gamma(1)Γ(12)\Gamma(\frac{1}{2})

Γ(1)=0exdx=ex0=1\Gamma(1) = \int_{0}^\infty e^{-x}\mathrm dx = -e^{-x}\bigg|_0^\infty = 1

Γ(12)=0x12exdx=x=t220et2dt=et2dt=π\Gamma(\frac{1}{2}) = \int_{0}^\infty x^{-\frac{1}{2}}e^{-x}\mathrm dx \overset{令x=t^2}{=} 2\int_{0}^{\infty}e^{-t^2}\mathrm dt = \int_{-\infty}^{\infty}e^{-t^2}\mathrm dt = \sqrt{\pi}

Note: 令 I=ex2dxI = \int_{-\infty}^{\infty}e^{-x^2}\mathrm dx , 有

I2=ex2dxey2dx=e(x2+y2)dxdy=极坐标变换02πdθ0er2rdr=πI^2 = \int_{-\infty}^{\infty}e^{-x^2}\mathrm dx \cdot \int_{-\infty}^{\infty}e^{-y^2}\mathrm dx = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}\mathrm dx \mathrm dy \overset{极坐标变换}{=} \int_0^{2\pi}\mathrm d\theta\int_0^\infty e^{-r^2}r\mathrm dr = \pi \notag

  • Γ(n)\Gamma(n)Γ(n+12),n=1,2,\Gamma(n+\frac{1}{2}),\quad n=1,2,\cdots

特别的, 当 ssnnn+12n+\frac{1}{2} 时有

Γ(n)=(n1)××2×1×Γ(1)=(n1)!\Gamma(n) = (n-1)\times\cdots\times2\times1\times\Gamma(1) = (n-1)!

Γ(n+12)=(n12)×(n32)××12×Γ(12)=(2n1)!!2nπ\Gamma{(n+\frac{1}{2})} = (n-\frac{1}{2})\times(n-\frac{3}{2})\times\cdots\times\frac{1}{2}\times\Gamma(\frac{1}{2}) = \frac{(2n-1)!!}{2^n}\sqrt{\pi}

Note: (2n1)!!=(2n1)×(2n3)××3×1(2n-1)!! = (2n-1)\times(2n-3)\times\cdots\times3\times1.